STRUCTURAL COOLING TOWER
STRUCTURAL COOLING TOWER
A cooling tower is a heat removal device that uses water to transfer process, waste heat into the atmosphere. Likewise, an industrial cooling tower operates on the principle of removing heat from water by evaporating a small portion of water that is recirculated through the unit. The mixing of warm water and cooler air releases latent heat of vaporization, causing the water to cool. If you are ever looking down from a high-rise building, you might notice square units with fans on top of them on the buildings below. Those are water cooling towers.
No one wants to stay in a building with bad air conditioning—at least not for too long. On the other hand, buildings with excellent cooling make you want to return, even if it’s just to enjoy the air. That’s thanks, in large part, to the continued modernization and innovation of the commercial cooling tower system.
Cooling Tower Structure The structural frame of a cooling tower is typically made of galvanized steel, but stainless steel is also an option. Fiberglass reinforced polyester casing panels, steel, or stainless casing panels for extra corrosion resistance are all options.
Air conditioning equipment and industrial processes can generate heat in the form of tons of hot water that needs to be cooled down. That’s where an industrial cooling tower comes in. Overheated water flows through the cooling tower where it’s recirculated and exposed to cool, dry air. Heat leaves the recirculating cooling tower water through evaporation. The colder water then reenters the air conditioning equipment or process to cool that equipment down, and the cooling cycle repeats over and over again. When the warm condenser goes into the cooling tower, the water is passed through some nozzles which spray the water into small droplets across the fill, which increases the surface area of water and allows for better heat loss thru greater evaporation. The purpose of the fan on top of the water cooling tower is to bring in air from the bottom of the tower and move it up and out in the opposite direction of the warm condenser water at the top of the unit. The air will carry the heat through evaporating water from the cooling tower into the atmosphere.